Cotation fonctionnelle : systèmes de dimensions, de tolérances et d'ajustements normalisés, construction et résolution de chaînes de cotes linéaires, analyses de systèmes mécaniques simples et choix d'éléments standards. Tolérances géométriques : cotes dimensionnelles, tolérances de forme, d'orientation, de position, de profil et de battement, état virtuel, éléments de référence, modificateurs d'états. Conception d'une structure de tolérancement et calcul de tolérance à partir d'exigences fonctionnelles et d'assemblages avec études de cas.
Conduction de la chaleur en régime permanent : géométries plane, cylindrique et sphérique; ailettes. Conduction en régime transitoire : modèle mathématique, concepts de la résistance thermique et de la capacité calorifique. Convection forcée et naturelle; couches limites dynamique et thermique; écoulements interne et externe; corrélations. Rayonnement : corps noir, gris et réel; émissivité et absorptivité; coefficients de géométrie; pouvoir émissif et radiosité; rayonnement dans une enceinte fermée. Échangeurs de chaleur : description, potentiel d'échange thermique et efficacité. Programmation et utilisation d'outils numériques et mise en pratique de la méthode de résolution des problèmes.
Cycle de la modélisation. Erreurs de modélisation. Vérification et validation en modélisation. Analyse de convergence. Extrapolation de Richardson. Méthode des solutions manufacturées. Adaptation de solution. Capacité prédictive. Ordre de précision d'une méthode numérique. Analyses de sensibilité et d'incertitude. Bonnes pratiques de programmation. Choix d'un langage de programmation approprié. Profilage de codes et optimisation. Contrôle de version (Git).
Approximation par éléments finis, maillage, système élémentaire, assemblage, structure des systèmes d'équations. Formulation générale : méthode de Ritz, méthode de Galerkin. Discrétisation par éléments finis : fonctions d'interpolation, base polynomiale, éléments de référence, intégration numérique, évaluation des erreurs. Résolution de problèmes de conduction de chaleur dans un mur, transfert de chaleur dans une ailette, transfert de chaleur dans un fluide et un solide. Stabilisation des équations de convection-conduction. Modélisation multi-physique.